
© Copyright Ian D. Romanick 2008

29-January-2008

VGP352 – Week 7

⇨ Agenda:
­ Quiz #3!
­ Assignment #3 due
­ Non-photorealistic rendering

­ Cel shading (cartoon rendering)
­ Silhouette edge rendering
­ Technical illustration

­ Assignment #4
­ Readings:

­ Present readings 1 and 2
­ Assign reading 3

© Copyright Ian D. Romanick 2008

29-January-2008

Non-photorealistic Rendering (NPR)

⇨ From wikipedia:
Non-photorealistic rendering (NPR) is an area of computer
graphics that focuses on enabling a wide variety of expres-
sive styles for digital art.

© Copyright Ian D. Romanick 2008

29-January-2008

Non-photorealistic Rendering (NPR)

⇨ From wikipedia:
Non-photorealistic rendering (NPR) is an area of computer
graphics that focuses on enabling a wide variety of expres-
sive styles for digital art.

⇨ In other words, NPR attempts to exaggerate or
use alternate representations of imagery to
convey or highlight a particular mood or
message

­ Cel shading (a.k.a. “toon” rendering)
­ Painterly rendering
­ Technical illustrations
­ etc.

© Copyright Ian D. Romanick 2008

29-January-2008

Cel Shading

⇨ Several common cartoon image styles:
­ Character regions filled with solid, single-tone colors
­ Regions filled with two tones: light and dark
­ Regions filled with three tones: light, dark, and

highlight

© Copyright Ian D. Romanick 2008

29-January-2008

Cel Shading

⇨ Several common cartoon image styles:
­ Character regions filled with solid, single-tone colors
­ Regions filled with two tones: light and dark
­ Regions filled with three tones: light, dark, and

highlight
­ Each is easy to produce on a computer

© Copyright Ian D. Romanick 2008

29-January-2008

Cel Shading

⇨ Single tone coloring

© Copyright Ian D. Romanick 2008

29-January-2008

Cel Shading

⇨ Single tone coloring
­ Solid coloring (flat shading) without lighting

© Copyright Ian D. Romanick 2008

29-January-2008

Cel Shading

⇨ Single tone coloring
­ Solid coloring (flat shading) without lighting

⇨ Two-tone coloring

© Copyright Ian D. Romanick 2008

29-January-2008

Cel Shading

⇨ Single tone coloring
­ Solid coloring (flat shading) without lighting

⇨ Two-tone coloring
­ Driven by surface lighting
­ If lighting is above some threshold, use the lighter

color
­ Otherwise use the darker color

© Copyright Ian D. Romanick 2008

29-January-2008

Cel Shading

⇨ Single tone coloring
­ Solid coloring (flat shading) without lighting

⇨ Two-tone coloring
­ Driven by surface lighting
­ If lighting is above some threshold, use the lighter

color
­ Otherwise use the darker color
­ Calculate N•L per vertex and interpolate across

surface, check value per fragment
­ Classically done using texture lookups, but is faster using

conditional assignments on shader hardware

© Copyright Ian D. Romanick 2008

29-January-2008

Cel Boundary Inking

⇨ Anyone who has seen a cartoon or a comic book
knows that certain boundaries are “inked”

© Copyright Ian D. Romanick 2008

29-January-2008

Cel Boundary Inking

⇨ Anyone who has seen a cartoon or a comic book
knows that certain boundaries are “inked”

⇨ Four main types of edges need inking:

© Copyright Ian D. Romanick 2008

29-January-2008

Cel Boundary Inking

⇨ Anyone who has seen a cartoon or a comic book
knows that certain boundaries are “inked”

⇨ Four main types of edges need inking:
­ Border edges – edges not shared by two polygons

© Copyright Ian D. Romanick 2008

29-January-2008

Cel Boundary Inking

⇨ Anyone who has seen a cartoon or a comic book
knows that certain boundaries are “inked”

⇨ Four main types of edges need inking:
­ Border edges – edges not shared by two polygons
­ Crease edges – edges where the angle between the

two surfaces is too sharp
­ This angle is called the dihedral angle

© Copyright Ian D. Romanick 2008

29-January-2008

Cel Boundary Inking

⇨ Anyone who has seen a cartoon or a comic book
knows that certain boundaries are “inked”

⇨ Four main types of edges need inking:
­ Border edges – edges not shared by two polygons
­ Crease edges – edges where the angle between the

two surfaces is too sharp
­ This angle is called the dihedral angle

­ Material edge – boundary between two different
colors or materials

© Copyright Ian D. Romanick 2008

29-January-2008

Cel Boundary Inking

⇨ Anyone who has seen a cartoon or a comic book
knows that certain boundaries are “inked”

⇨ Four main types of edges need inking:
­ Border edges – edges not shared by two polygons
­ Crease edges – edges where the angle between the

two surfaces is too sharp
­ This angle is called the dihedral angle

­ Material edge – boundary between two different
colors or materials

­ Silhouette edges – edges where one border polygon
faces towards the viewer and the other faces away

© Copyright Ian D. Romanick 2008

29-January-2008

Cel Boundary Inking

⇨ Most boundary types are calculated during
authoring or as a preprocessing step

­ Border edges – edges are added by the artist, by the
authoring tool, or are detected in a preprocessing step

­ Crease edges – dihedral angle is calculated during
preprocessing. If N

surface1
•N

surface2
 < cos(60˚), the edge is

a crease
­ Material edge – handled the same as border edges

© Copyright Ian D. Romanick 2008

29-January-2008

Silhouette Edge Rendering

⇨ Silhouette edges are view-dependent and must
be calculated at run-time

­ Conceptually similar to drawing fins in shells-and-fins
fur rendering

⇨ Several broad classes of implementations:
­ Surface angle
­ Added geometry
­ Image processing
­ Explicit edge detection

© Copyright Ian D. Romanick 2008

29-January-2008

Silhouette Edge Rendering

⇨ Surface angle test is similar to two-tone cel
shading

­ Examine angle between V and N
­ If angle is near 90˚, use silhouette color

⇨ Pros / cons:
­ Really easy to implement
­ Doesn't work on all models

­ Generally fails on models with large flat surfaces
­ Only worked on about 25% of the models in the game Cel

Damage1

1 Real-Time Rendering, p. 295

© Copyright Ian D. Romanick 2008

29-January-2008

Silhouette Edge Rendering

⇨ Back-face biasing:
­ Render back-facing geometry by moving it towards

the camera by some small delta

­ Amount to bias back-face depends on both slope of
back-face and slope of front-face

View

Visible silhouette

© Copyright Ian D. Romanick 2008

29-January-2008

Silhouette Edge Rendering

⇨ Edge expansion:
­ Move each face out by some distance along the

plane's normal
­ Not the vertex normal!
­ Adjust the distance according to the desired silhouette

thickness
­ Create new geometry to fill in the gaps
­ Render back-facing geometry

Moved faces

Added faces

© Copyright Ian D. Romanick 2008

29-January-2008

Silhouette Edge Rendering

⇨ Shell expansion:
­ Similar to edge expansion
­ Render shell as object geometry expanded along

vertex normals
­ Normals must be identical for vertices shared by two

polygons
­ Otherwise degenerate edge polygons must be added
­ Render only back-faces of shell

© Copyright Ian D. Romanick 2008

29-January-2008

Silhouette Edge Rendering

⇨ Image processing:
­ Render surface normal and depth a texture

­ Store normal in RGB and most significant portion of depth in
alpha

­ Process texture with separable edge detection filter
­ Card and Mitchell recommend using the Sobel edge

detection filter
­ Store each pass in a texture
­ Composite both textures together over scene

© Copyright Ian D. Romanick 2008

29-January-2008

Silhouette Edge Rendering

⇨ Explicit edge detection:
­ Draw each edge of the object as a line
­ At each vertex, store the normals of the two adjoining

polygons
­ If one normal points towards the viewer and the other

away, draw the line as a silhouette
­ If the two normals point significantly away from each

other, draw the line as a crease

© Copyright Ian D. Romanick 2008

29-January-2008

Break

© Copyright Ian D. Romanick 2008

29-January-2008

Gooch-style Technical Illustration

⇨ Many similar ideas to cel shading
­ Use alternate shading
­ Highlight creases
­ Highlight silhouettes

© Copyright Ian D. Romanick 2008

29-January-2008

Gooch-style Technical Illustration

⇨ Shade objects from warm to cool instead of light
to dark

­ Still conveys information about the curvature of the
object

­ Maintains visibility of details in areas that would be
dark or difficult to light

© Copyright Ian D. Romanick 2008

29-January-2008

Gooch-style Technical Illustration

⇨ Shade objects from warm to cool instead of light
to dark

­ Still conveys information about the curvature of the
object

­ Maintains visibility of details in areas that would be
dark or difficult to light

⇨ Shade in similar manner to cel shading
­ Calculate N•L per vertex
­ Use interpolated value per fragment to look up in a 1D

blue-green to yellow-orange gradient texture

© Copyright Ian D. Romanick 2008

29-January-2008

Gooch-style Technical Illustration

⇨ Draw crease edges in white
­ This helps provide information about the model's

orientation

© Copyright Ian D. Romanick 2008

29-January-2008

Gooch-style Technical Illustration

⇨ Draw crease edges in white
­ This helps provide information about the model's

orientation
⇨ Draw silhouette edges in black

­ If an edge is both a crease and a silhouette, it should
be drawn as a silhouette

© Copyright Ian D. Romanick 2008

29-January-2008

Gooch-style Technical Illustration

⇨ Draw crease edges in white
­ This helps provide information about the model's

orientation
⇨ Draw silhouette edges in black

­ If an edge is both a crease and a silhouette, it should
be drawn as a silhouette

⇨ Silhouette and crease edges are handled
differently, so the image processing method of
inking probably can't be used

­ Using the explicit edge detection method allows
silhouettes and creases to be drawn in a single pass

© Copyright Ian D. Romanick 2008

29-January-2008

References

Gooch, B., Sloan, P. J., Gooch, A., Shirley, P., and Riesenfeld, R. 1999.
Interactive technical illustration. In Proceedings of the 1999 Symposium on
interactive 3D Graphics (Atlanta, Georgia, United States, April 26 - 29, 1999).
I3D '99. ACM, New York, NY, 31-38. http://www.cs.utah.edu/~bgooch/ITI/

http://www.cs.utah.edu/~bgooch/ITI/

© Copyright Ian D. Romanick 2008

29-January-2008

Next week...

⇨ Procedural textures
­ Noise
­ Simple noise based textures
­ Wang tiles

© Copyright Ian D. Romanick 2008

29-January-2008

Legal Statement

This work represents the view of the authors and does not necessarily rep-
resent the view of IBM or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service
marks of others.

